The SCARFACE gene is required for cotyledon and leaf vein patterning.

نویسندگان

  • M K Deyholos
  • G Cordner
  • D Beebe
  • L E Sieburth
چکیده

Mechanisms controlling vein patterning are poorly understood. We describe a recessive Arabidopsis mutant, scarface (sfc), which maps to chromosome 5. sfc mutants have vein pattern defects in cotyledons, leaves, sepals and petals. In contrast to the wild type, in which these organs all have linear veins that are continuous with at least one other vein, in sfc mutants these organs' secondary and tertiary veins are largely replaced by small segments of discontinuous veins, which we call vascular islands. Patterning defects are manifest in cotyledon provascular tissue, suggesting that the patterning defect occurs early in organogenesis. sfc mutants have exaggerated responses to exogenous auxin. Analysis of monopteros (mp(T370)) sfc-1 double mutants suggested that SFC has partially overlapping functions with MP in patterning of both primary and secondary veins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis.

To identify molecular mechanisms controlling vein patterns, we analyzed scarface (sfc) mutants. sfc cotyledon and leaf veins are largely fragmented, unlike the interconnected networks in wild-type plants. SFC encodes an ADP ribosylation factor GTPase activating protein (ARF-GAP), a class with well-established roles in vesicle trafficking regulation. Quadruple mutants of SCF and three homologs (...

متن کامل

Auxin is required for leaf vein pattern in Arabidopsis.

To investigate possible roles of polar auxin transport in vein patterning, cotyledon and leaf vein patterns were compared for plants grown in medium containing polar auxin transport inhibitors (N-1-naphthylphthalamic acid, 9-hydroxyfluorene-9-carboxylic acid, and 2,3,5-triiodobenzoic acid) and in medium containing a less well-characterized inhibitor of auxin-mediated processes, 2-(p-chlorophyno...

متن کامل

NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root.

Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independen...

متن کامل

The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis.

The hemivenata-1 (hve-1) recessive allele was isolated in a search for natural variations in the leaf venation pattern of Arabidopsis thaliana, where it was seen to cause extremely simple venation in vegetative leaves and cotyledons, increased shoot branching, and reduced root waving and fertility, traits that are reminiscent of some mutants deficient in auxin signaling. Reduced sensitivity to ...

متن کامل

The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.

To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 127 15  شماره 

صفحات  -

تاریخ انتشار 2000